Multiple time scales in volatility and leverage correlations: An stochastic volatility model
نویسندگان
چکیده
Financial time series exhibit two different type of non linear correlations: (i) volatility autocorrelations that have a very long range memory, on the order of years, and (ii) asymmetric return-volatility (or ‘leverage’) correlations that are much shorter ranged. Different stochastic volatility models have been proposed in the past to account for both these correlations. However, in these models, the decay of the correlations is exponential, with a single time scale for both the volatility and the leverage correlations, at variance with observations. We extend the linear Ornstein-Uhlenbeck stochastic volatility model by assuming that the mean reverting level is itself random. We find that the resulting three-dimensional diffusion process can account for different correlation time scales. We show that the results are in good agreement with a century of the Dow Jones index daily returns (1900-2000), with the exception of crash days.
منابع مشابه
Modeling Stock Return Volatility Using Symmetric and Asymmetric Nonlinear State Space Models: Case of Tehran Stock Market
Volatility is a measure of uncertainty that plays a central role in financial theory, risk management, and pricing authority. Turbulence is the conditional variance of changes in asset prices that is not directly observable and is considered a hidden variable that is indirectly calculated using some approximations. To do this, two general approaches are presented in the literature of financial ...
متن کاملA comparison between several correlated stochastic volatility models
We compare the most common SV models such as the Ornstein-Uhlenbeck (OU), the Heston and the exponential OU (expOU) models. We try to decide which is the most appropriate one by studying their volatility autocorrelation and leverage effect, and thus outline the limitations of each model. We add empirical research on market indices confirming the universality of the leverage and volatility corre...
متن کاملSimulating Exchange Rate Volatility in Iran Using Stochastic Differential Equations
The main purpose of this paper is to analyze the exchange rate volatility in Iran in the time period between 2011/11/27 and 2017/02/25 on a daily basis. As a tradable asset and as an important and effective economic variable, exchange rate plays a decisive role in the economy of a country. In a successful economic management, the modeling and prediction of the exchange rate volatility is esse...
متن کاملBayesian analysis of multivariate stochastic volatility with skew distribution
Multivariate stochastic volatility models with skew distributions are proposed. Exploiting Cholesky stochastic volatility modeling, univariate stochastic volatility processes with leverage effect and generalized hyperbolic skew t-distributions are embedded to multivariate analysis with time-varying correlations. Bayesian prior works allow this approach to provide parsimonious skew structure and...
متن کاملA Multi-Time Scale Non-Gaussian Model of Stock Returns
We propose a stochastic process for stock movements that, with just one source of Brownian noise, has an instantaneous volatility that rises from a type of statistical feedback across many time scales. This results in a stationary non-Gaussian process which captures many features observed in time series of real stock returns. These include volatility clustering, a kurtosis which decreases slowl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007